Efficient Separation of Convolutive Image Mixtures
Author(s) -
Sarit Shwartz,
Yoav Y. Schechner,
Michael Zibulevsky
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-32630-8
DOI - 10.1007/11679363_31
Subject(s) - computer science , permutation (music) , artificial intelligence , algorithm , blind signal separation , pointwise , maxima and minima , fourier transform , image (mathematics) , short time fourier transform , computer vision , pattern recognition (psychology) , mathematics , fourier analysis , computer network , mathematical analysis , channel (broadcasting) , physics , acoustics
Convolutive mixtures of images are common in photography of semi-reflections. They also occur in microscopy and tomography. Their formation process involves focusing on an object layer, over which defocused layers are superimposed. Blind source separation (BSS) of convolutive image mixtures by direct optimization of mutual information is very complex and suffers from local minima. Thus, we devise an efficient approach to solve these problems. Our method is fast, while achieving high quality image separation. The convolutive BSS problem is converted into a set of instantaneous (pointwise) problems, using a short time Fourier transform (STFT). Standard BSS solutions for instantaneous problems suffer, however, from scale and permutation ambiguities. We overcome these ambiguities by exploiting a parametric model of the defocus point spread function. Moreover, we enhance the efficiency of the approach by exploiting the sparsity of the STFT representation as a prior.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom