z-logo
open-access-imgOpen Access
Inductive Querying for Discovering Subgroups and Clusters
Author(s) -
Albrecht Zimmermann,
Luc De Raedt
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-31331-1
DOI - 10.1007/11615576_18
Subject(s) - computer science , cluster analysis , cluster (spacecraft) , data mining , regular polygon , theoretical computer science , artificial intelligence , mathematics , geometry , programming language
We introduce the problem of cluster-grouping and show that it integrates several important data mining tasks, i.e. subgroup discovery, mining correlated patterns and aspects from clustering. The problem of cluster-grouping can be regarded as a new type of inductive optimization query that asks for the k best patterns according to a convex criterion. The algorithm CG for solving cluster-grouping problems is presented and the underlying mechanisms are discussed. The approach is experimentally evaluated on a number of real-life data sets. The results indicate that the algorithm improves upon the subgroup discovery algorithm CN2-WRAcc and is competitive with the clustering algorithm Cob Web.status: publishe

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom