Inductive Querying for Discovering Subgroups and Clusters
Author(s) -
Albrecht Zimmermann,
Luc De Raedt
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-31331-1
DOI - 10.1007/11615576_18
Subject(s) - computer science , cluster analysis , cluster (spacecraft) , data mining , regular polygon , theoretical computer science , artificial intelligence , mathematics , geometry , programming language
We introduce the problem of cluster-grouping and show that it integrates several important data mining tasks, i.e. subgroup discovery, mining correlated patterns and aspects from clustering. The problem of cluster-grouping can be regarded as a new type of inductive optimization query that asks for the k best patterns according to a convex criterion. The algorithm CG for solving cluster-grouping problems is presented and the underlying mechanisms are discussed. The approach is experimentally evaluated on a number of real-life data sets. The results indicate that the algorithm improves upon the subgroup discovery algorithm CN2-WRAcc and is competitive with the clustering algorithm Cob Web.status: publishe
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom