z-logo
open-access-imgOpen Access
ScoPred–Scalable User-Directed Performance Prediction Using Complexity Modeling and Historical Data
Author(s) -
Benjamin Lafreniere,
Angela C. Sodan
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-31024-X
DOI - 10.1007/11605300_3
Subject(s) - computer science , scalability , data mining , database
Using historical information to predict future runs of parallel jobs has shown to be valuable in job scheduling. Trends toward more flexible job-scheduling techniques such as adaptive resource allocation, and toward the expansion of scheduling to grids, make runtime predictions even more important. We present a technique of employing both a user's knowledge of his/her parallel application and historical application-run data, synthesizing them to derive accurate and scalable predictions for future runs. These scalable predictions apply to runtime characteristics for different numbers of nodes (processor scalability) and different problem sizes (problem-size scalability). We employ multiple linear regression and show that for decently accurate complexity models, good prediction accuracy can be obtained.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom