z-logo
open-access-imgOpen Access
Enhancing Security of Real-Time Applications on Grids Through Dynamic Scheduling
Author(s) -
Tao Xie,
Xiao Qin
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-31024-X
DOI - 10.1007/11605300_11
Subject(s) - computer science , scheduling (production processes) , computer security model , dynamic priority scheduling , distributed computing , embedded system , quality of service , computer security , computer network , operations management , economics
Real-time applications with security requirements are emerging in various areas including government, education, and business. However, conventional real-time scheduling algorithms failed to fulfill the security requirements of real-time applications. In this paper we propose a dynamic real-time scheduling algorithm, or SAREG, which is capable of enhancing quality of security for real-time applications running on Grids. In addition, we present a mathematical model to formally describe a scheduling framework, security-sensitive real-time applications, and security overheads. We leverage the model to measure security overheads incurred by security services, including encryption, authentication, integrity check, etc. The SAREG algorithm seamlessly integrates security requirements into real-time scheduling by employing the security overhead model. To evaluate the effectiveness of SAREG, we conducted extensive simulations using a real world trace from a supercomputing center. Experimental results show that SAREG significantly improves system performance in terms of quality of security and schedulability over three existing scheduling algorithms.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom