Semantic Integration of Tree-Structured Data Using Dimension Graphs
Author(s) -
Theodore Dalamagas,
Dimitri Theodoratos,
Antonis Koufopoulos,
I-Ting Liu
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-31001-0
DOI - 10.1007/11603412_8
Subject(s) - computer science , tree (set theory) , query language , dimension (graph theory) , tree structure , information retrieval , data structure , xml , query optimization , theoretical computer science , data mining , programming language , world wide web , mathematical analysis , mathematics , pure mathematics
Nowadays, huge volumes of Web data are organized or exported in tree-structured form. Popular examples of such structures are product catalogs of e-market stores, taxonomies of thematic categories, XML data encodings, etc. Even for a single knowledge domain, name mismatches, structural differences and structural inconsistencies raise difficulties when many data sources need to be integrated and queried in a uniform way. In this paper, we present a method for semantically integrating tree-structured data. We introduce dimensions which are sets of semantically related nodes in tree structures. Based on dimensions, we suggest dimension graphs. Dimension graphs can be automatically extracted from trees and abstract their structural information. They are semantically rich constructs that provide query guidance to pose queries, assist query evaluation and support integration of tree-structured data. We design a query language to query tree-structured data. The language allows full, partial or no specification of the structure of the underlying tree-structured data used to issue queries. Thus, queries in our language are not restricted by the structure of the trees. We provide necessary and sufficient conditions for checking query satisfiability and we present a technique for evaluating satisfiable queries. Finally, we conducted several experiments to compare our method for integrating tree-structured data with one that does not exploit dimension graphs. Our results demonstrate the superiority of our approach. © Springer-Verlag Berlin Heidelberg 2005
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom