z-logo
open-access-imgOpen Access
Dependable Polygon-Processing Algorithms for Safety-Critical Embedded Systems
Author(s) -
Jens Brandt,
Klaus Schneider
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-30807-5
DOI - 10.1007/11596356_42
Subject(s) - correctness , computer science , automated theorem proving , gas meter prover , polygon (computer graphics) , algorithm , process (computing) , theoretical computer science , programming language , mathematical proof , mathematics , geometry , telecommunications , frame (networking)
Algorithms that process geometric objects become more and more important for many safety-critical embedded systems, e.g. for motion planning or collision detection, where correctness is indispensable. The main challenge to demonstrating correctness is the consistent handling of degenerate cases like collinear line segments. In this paper, we therefore propose the use of an interactive theorem prover to develop dependable geometry algorithms for safety-critical embedded systems. Our solution is based on the use of a three-valued logic to make degenerate cases explicit. Using the theorem prover, we are not only able to prove the correctness of the obtained algorithms, but also to directly derive a software library of provably correct geometry algorithms for safety-critical applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom