z-logo
open-access-imgOpen Access
Compiler Optimizations Using Data Compression to Decrease Address Reference Entropy
Author(s) -
H. G. Dietz,
Timothy I. Mattox
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-30781-8
DOI - 10.1007/11596110_9
Subject(s) - computer science , compiler , parallel computing , optimizing compiler , entropy encoding , data compression , programming language , algorithm
In modern computers, a single “random” access to main memory often takes as much time as executing hundreds of instructions. Rather than using traditional compiler approaches to enhance locality by interchanging loops, reordering data structures, etc., this paper proposes the radical concept of using aggressive data compression technology to improve hierarchical memory performance by reducing memory address reference entropy. In some cases, conventional compression technology can be adapted. However, where variable access patterns must be permitted, other compression techniques must be used. For the special case of random access to elements of sparse matrices, data structures and compiler technology already exist. Our approach is much more general, using compressive hash functions to implement random access lookup tables. Techniques that can be used to improve the effectiveness of any compression method in reducing memory access entropy also are discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom