z-logo
open-access-imgOpen Access
Embedding the Stable Failures Model of CSP in PVS
Author(s) -
Kun Wei,
James Heather
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-30492-4
DOI - 10.1007/11589976_15
Subject(s) - liveness , computer science , automated theorem proving , embedding , mathematical proof , deadlock , theoretical computer science , gas meter prover , hol , formal verification , formal proof , expressive power , algorithm , programming language , mathematics , artificial intelligence , geometry
We present an embedding of the stable failures model of CSP in the PVS theorem prover. Our work, extending a previous embedding of the traces model of CSP in [6], provides a platform for the formal verification not only of safety specifications, but also of liveness specifications of concurrent systems in theorem provers. Such a platform is particularly good at analyzing infinite-state systems with an arbitrary number of components. We demonstrate the power of this embedding by using it to construct formal proofs that the asymmetric dining philosophers problem with an arbitrary number of philosophers is deterministic and deadlock-free, and that an industrial-scale example, a 'virtual network' [21], with any number of dimensions, is deadlock-free. We have established some generic proof tactics for verification of properties of networks with many components. In addition, our technique of integrating FDR and PVS in our demonstration allows for handling of systems that would be difficult or impossible to analyze using either tool on its own. © Springer-Verlag Berlin Heidelberg 2005

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom