The Minimum Manhattan Network Problem: A Fast Factor-3 Approximation
Author(s) -
Marc Benkert,
Alexander Wolff,
Florian Widmann
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-30467-3
DOI - 10.1007/11589440_2
Subject(s) - factor (programming language) , computer science , mathematical optimization , mathematics , programming language
Given a set of nodes in the plane and a constant t ≥ 1, a Euclidean t-spanner is a network in which, for any pair of nodes, the ratio of the network distance and the Euclidean distance of the two nodes is at most t. These networks have applications in transportation or communication network design and have been studied extensively. In this paper we study 1-spanners under the Manhattan (or L1-) metric. Such networks are called Manhattan networks. A Manhattan network for a set of nodes can be seen as a set of axis-parallel line segments whose union contains an x- and y-monotone path for each pair of nodes. It is not known whether it is NP-hard to compute minimum Manhattan networks, i.e. Manhattan networks of minimum total length. In this paper we present a factor-3 approximation algorithm for this problem. Given a set of n nodes, our algorithm takes O(n log n) time and linear space.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom