Variational, Geometric, and Level Set Methods in Computer Vision
Author(s) -
Gabriel Peyré,
Laurent D. Cohen
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
DOI - 10.1007/11567646
Subject(s) - computer vision , computer science , artificial intelligence , segmentation , path (computing) , motion (physics) , set (abstract data type) , stereopsis , structure from motion , computer graphics (images) , programming language
International audienceIn this paper we present a simple modification of the Fast Marching algorithm to speed up the computation using a heuristic. This modification leads to an algorithm that is similar in spirit to the A* algorithm used in artificial intelligence. Using a heuristic allows to extract geodesics from a single source to a single goal very quickly and with a low memory requirement. Any application that needs to compute a lot of geodesic paths can gain benefits from our algorithm. The computational saving is even more important for 3D medical images with tubular structures and for higher dimensional data
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom