z-logo
open-access-imgOpen Access
Image Deformation Using Velocity Fields: An Exact Solution
Author(s) -
Jeff Orchard
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-29069-9
DOI - 10.1007/11559573_55
Subject(s) - pixel , image (mathematics) , deformation (meteorology) , partition (number theory) , mathematics , vector field , algorithm , mathematical analysis , exact solutions in general relativity , topology (electrical circuits) , geometry , computer vision , computer science , physics , combinatorics , meteorology
In image deformation, one of the challenges is to produce a deformation that preserves image topology. Such deformations are called “homeomorphic”. One method of producing homeomorphic deformations is to move the pixels according to a continuous velocity field defined over the image. The pixels flow along solution curves. Finding the pixel trajectories requires solving a system of differential equations (DEs). Until now, the only known way to accomplish this is to solve the system approximately using numerical time-stepping schemes. However, inaccuracies in the numerical solution can still result in non-homeomorphic deformations. This paper introduces a method of solving the system of DEs exactly over a triangular partition of the image. The results show that the exact method produces homeomorphic deformations in scenarios where the numerical methods fail.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom