z-logo
open-access-imgOpen Access
Using a Theorem Prover for Reasoning on Constraint Problems
Author(s) -
Marco Cadoli,
Toni Mancini
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
DOI - 10.1007/11558590_4
Subject(s) - automated theorem proving , computer science , constraint (computer aided design) , automated reasoning , constraint programming , constraint satisfaction , graph , theoretical computer science , programming language , mathematical optimization , mathematics , artificial intelligence , geometry , probabilistic logic , stochastic programming
Specifications of constraint problems can be considered logical formulae. As a consequence, it is possible to infer their properties by means of automated reasoning tools, with the goal of automatically synthesizing transformations that can make the solving process more efficient. The purpose of this paper is to link two important technologies: automated theorem proving and constraint programming. We report the results on using ATP technology for checking existence of symmetries, checking whether a given formula breaks a symmetry, and checking existence of functional dependencies in a specification. The output of the reasoning phase is a transformed constraint program, consisting in a reformulated specification and, possibly a search strategy. We show our techniques on problems such as Graph coloring, Sailco inventory and Protein folding.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom