z-logo
open-access-imgOpen Access
A Linear Time Biclustering Algorithm for Time Series Gene Expression Data
Author(s) -
Sara C. Madeira,
Arlindo L. Oliveira
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-29008-7
DOI - 10.1007/11557067_4
Subject(s) - biclustering , computer science , cluster analysis , heuristic , context (archaeology) , time complexity , data mining , algorithm , pattern recognition (psychology) , artificial intelligence , correlation clustering , cure data clustering algorithm , paleontology , biology
Several non-supervised machine learning methods have been used in the analysis of gene expression data obtained from microarray experiments. Recently, biclustering, a non-supervised approach that performs simultaneous clustering on the row and column dimensions of the data matrix, has been shown to be remarkably effective in a variety of applications. The goal of biclustering is to find subgroups of genes and subgroups of conditions, where the genes exhibit highly correlated behaviors. In the most common settings, biclustering is an NP-complete problem, and heuristic approaches are used to obtain sub-optimal solutions using reasonable computational resources. In this work, we examine a particular setting of the problem, where we are concerned with finding biclusters in time series expression data. In this context, we are interested in finding biclusters with consecutive columns. For this particular version of the problem, we propose an algorithm that finds and reports all relevant biclusters in time linear on the size of the data matrix. This complexity is obtained by manipulating a discretized version of the matrix and by using string processing techniques based on suffix trees. We report results in both synthetic and real data that show the effectiveness of the approach.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom