z-logo
open-access-imgOpen Access
Certificateless Public Key Encryption Without Pairing
Author(s) -
Joonsang Baek,
Reihaneh Safavi–Naini,
Willy Susilo
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-29001-X
DOI - 10.1007/11556992_10
Subject(s) - random oracle , public key cryptography , computer science , key escrow , computer security , id based cryptography , encryption , key (lock) , cryptography , probabilistic encryption , theoretical computer science , ciphertext , key distribution
“Certificateless Public Key Cryptography” has very appealing features, namely it does not require any public key certification (cf. traditional Public Key Cryptography) nor having key escrow problem (cf. Identity-Based Cryptography). Unfortunately, construction of Certificateless Public Key Encryption (CLPKE) schemes has so far depended on the use of Identity-Based Encryption, which results in the bilinear pairing-based schemes that need costly operations. In this paper, we consider a relaxation of the original model of CLPKE and propose a new CLPKE scheme that does not depend on the bilinear pairings. We prove that in the random oracle model, our scheme meets the strong security requirements of the new model of CLPKE such as security against public key replacement attack and chosen ciphertext attack, assuming that the standard Computational Diffie-Hellman problem is intractable.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom