Finding the Number of Clusters for Nonparametric Segmentation
Author(s) -
N. Nasios,
Adrian G. Borş
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-28969-0
DOI - 10.1007/11556121_27
Subject(s) - hessian matrix , computer science , cluster analysis , algorithm , scaling , gaussian , nonparametric statistics , parametric statistics , pattern recognition (psychology) , artificial intelligence , mathematics , statistics , physics , geometry , quantum mechanics
Non-parametric data representation can be done by means of a potential function. This paper introduces a methodology for finding modes of the potential function. Two different methods are considered for the potential function representation: by using summations of Gaussian kernels, and by employing quantum clustering. In the second case each data sample is associated with a quantum physics particle that has a radial energy field around its location. Both methods use a scaling parameter (bandwidth) to model the strength of the influence around each data sample. We estimate the scaling parameter as the mean of the Gamma distribution that models the variances of K-nearest data samples to any given data. The local Hessian is used afterwards to find the modes of the resulting potential function. Each mode is associated with a cluster. We apply the proposed algorithm for blind signal separation and for the topographic segmentation of radar images of terrain.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom