z-logo
open-access-imgOpen Access
Separating the Notions of Self- and Autoreducibility
Author(s) -
Piotr Faliszewski,
Mitsunori Ogihara
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-28702-7
DOI - 10.1007/11549345_27
Subject(s) - pspace , turing machine , combinatorics , complexity class , time complexity , discrete mathematics , mathematics , computer science , computational complexity theory , algorithm , computation
Recently Glaßer et al. have shown that for many classes C including PSPACE and NP it holds that all of its nontrivial many-one complete languages are autoreducible. This immediately raises the question of whether all many-one complete languages are Turing self-reducible for such classes C. This paper considers a simpler version of this question—whether all PSPACE-complete (NP-complete) languages are length-decreasing self-reducible. We show that if all PSPACE-complete languages are length-decreasing self-reducible then PSPACE = P and that if all NP-complete languages are length-decreasing self-reducible then NP = P. The same type of result holds for many other natural complexity classes. In particular, we show that (1) not all NL-complete sets are logspace length-decreasing self-reducible, (2) unconditionally not all PSPACE-complete languages are logpsace length-decreasing self-reducible, and (3) unconditionally not all PSPACE-complete languages are polynomial-time length-decreasing self-reducible.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom