z-logo
open-access-imgOpen Access
Unfounded Sets for Disjunctive Logic Programs with Arbitrary Aggregates
Author(s) -
Wolfgang Faber
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-28538-5
DOI - 10.1007/11546207_4
Subject(s) - stable model semantics , computer science , answer set programming , theoretical computer science , set (abstract data type) , aggregate (composite) , robustness (evolution) , semantics (computer science) , logic programming , programming language , algorithm , discrete mathematics , algebra over a field , mathematics , operational semantics , biochemistry , chemistry , materials science , pure mathematics , composite material , gene
Aggregates in answer set programming (ASP) have recently been studied quite intensively. The main focus of previous work has been on defining suitable semantics for programs with arbitrary, potentially recursive aggregates. By now, these efforts appear to have converged. On another line of research, the relation between unfounded sets and (aggregate-free) answer sets has lately been rediscovered. It turned out that most of the currently available answer set solvers rely on this or closely related results (e.g., loop formulas). In this paper, we unite these lines and give a new definition of unfounded sets for disjunctive logic programs with arbitrary, possibly recursive aggregates. While being syntactically somewhat different, we can show that this definition properly generalizes all main notions of unfounded sets that have previously been defined for fragments of the language. We demonstrate that, as for restricted languages, answer sets can be crisply characterized by unfounded sets: They are precisely the unfounded-free models. This result can be seen as a confirmation of the robustness of the definition of answer sets for arbitrary aggregates. We also provide a comprehensive complexity analysis for unfounded sets, and study its impact on answer set computation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom