A Novel Pattern Classification Method for Multivariate EMG Signals Using Neural Network
Author(s) -
Nan Bu,
Jun Arita,
Toshio Tsuji
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-28325-0
DOI - 10.1007/11539117_26
Subject(s) - pattern recognition (psychology) , computer science , artificial intelligence , feature extraction , curse of dimensionality , artificial neural network , principal component analysis , feature vector , feature (linguistics) , philosophy , linguistics
Feature extraction is an important issue in electromyography (EMG) pattern classification, where feature sets of high dimensionality are always used. This paper proposes a novel classification method to deal with high-dimensional EMG patterns, using a probabilistic neural network, a reduced-dimensional log-linearized Gaussian mixture network (RD-LLGMN) [1]. Since RD-LLGMN merges feature extraction and pattern classification processes into its structure, lower-dimensional feature set consistent with classification purposes can be extracted, so that, better classification performance is possible. To verify feasibility of the proposed method, phoneme classification experiments were conducted using frequency features of EMG signals measured from mimetic and cervical muscles. Filter banks are used to extract frequency features, and dimensionality of the features grows significantly when we increase resolution of frequency. In these experiments, the proposed method achieved considerably high classification rates, and outperformed traditional methods that are based on principle component analysis (PCA).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom