Towards a Typed Geometry of Interaction
Author(s) -
Esfandiar Haghverdi,
Philip Scott
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
DOI - 10.1007/11538363_16
Subject(s) - soundness , orthogonality , completeness (order theory) , linear logic , trace (psycholinguistics) , interpretation (philosophy) , invariant (physics) , multiplicative function , mathematics , computer science , algebra over a field , calculus (dental) , algorithm , discrete mathematics , pure mathematics , geometry , programming language , medicine , mathematical analysis , linguistics , philosophy , dentistry , mathematical physics
Girard's Geometry of Interaction (GoI) develops a mathematical framework for modelling the dynamics of cut-elimination. We introduce a typed version of GoI, called Multiobject GoI (MGoI) for multiplicative linear logic without units in categories which include previous (untyped) GoI models, as well as models not possible in the original untyped version. The development of MGoI depends on a new theory of partial traces and trace classes, as well as an abstract notion of orthogonality (related to work of Hyland and Schalk) We develop Girard's original theory of types, data and algorithms in our setting, and show his execution formula to be an invariant of Cut Elimination. We prove Soundness and Completeness Theorems for the MGoI interpretation in partially traced categories with an orthogonality.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom