Constrained Shortest Path Computation
Author(s) -
Manolis Terrovitis,
Spiridon Bakiras,
Dimitris Papadias,
Kyriakos Mouratidis
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-28127-4
DOI - 10.1007/11535331_11
Subject(s) - shortest path problem , path (computing) , euclidean shortest path , sequence (biology) , computer science , computation , euclidean distance , algorithm , mathematics , k shortest path routing , theoretical computer science , artificial intelligence , graph , biology , genetics , programming language
This paper proposes and solves α-autonomy and κ-stops shortest path problems in large spatial databases. Given a source s and a destination d, an α-autonomy query retrieves a sequence of data points connecting s and d, such that the distance between any two consecutive points in the path is not greater than α. A κ-stops query retrieves a sequence that contains exactly κ intermediate data points. In both cases our aim is to compute the shortest path subject to these constraints. Assuming that the dataset is indexed by a data-partitioning method, the proposed techniques initially compute a sub-optimal path by utilizing the Euclidean distance information provided by the index. The length of the retrieved path is used to prune the search space, filtering out large parts of the input dataset. In a final step, the optimal (α-autonomy or κ-stops) path is computed (using only the non-eliminated data points) by an exact algorithm. We discuss several processing methods for both problems, and evaluate their efficiency through extensive experiments. © Springer-Verlag Berlin Heidelberg 2005
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom