z-logo
open-access-imgOpen Access
On the Role of Information Compaction to Intrusion Detection
Author(s) -
Fernando Godínez,
Dieter Hutter,
Raúl Monroy
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-28063-4
DOI - 10.1007/11533962_9
Subject(s) - computer science , intrusion detection system , byte , anomaly detection , hidden markov model , data mining , anomaly based intrusion detection system , identification (biology) , markov chain , information extraction , process (computing) , artificial intelligence , machine learning , operating system , botany , biology
An intrusion detection system (IDS) usually has to analyse Giga-bytes of audit information. In the case of anomaly IDS, the information is used to build a user profile characterising normal behaviour. Whereas for misuse IDSs, it is used to test against known attacks. Probabilistic methods, e.g. hidden Markov models, have proved to be suitable to profile formation but are prohibitively expensive. To bring these methods into practise, this paper aims to reduce the audit information by folding up subsequences that commonly occur within it. Using n-grams language models, we have been able to successfully identify the n-grams that appear most frequently. The main contribution of this paper is a n-gram extraction and identification process that significantly reduces an input log file keeping key information for intrusion detection. We reduced log files by a factor of 3.6 in the worst case and 4.8 in the best case. We also tested reduced data using hidden Markov models (HMMs) for intrusion detection. The time needed to train the HMMs is greatly reduced by using our reduced log files, but most importantly, the impact on both the detection and false positive ratios are negligible.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom