z-logo
open-access-imgOpen Access
Assigning Unique Keys to Chemical Compounds for Data Integration: Some Interesting Counter Examples
Author(s) -
Greeshma Neglur,
Robert L. Grossman,
Bing Liu
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-27967-9
DOI - 10.1007/11530084_13
Subject(s) - computer science , identifier , python (programming language) , theoretical computer science , tree traversal , notation , algorithm , programming language , mathematics , arithmetic
Integrating data involving chemical structures is simplified when unique identifiers (UIDs) can be associated with chemical structures. For example, these identifiers can be used as database keys. One common approach is to use the Unique SMILES notation introduced in [2]. The Unique SMILES views a chemical structure as a graph with atoms as nodes and bonds as edges and uses a depth first traversal of the graph to generate the SMILES strings. The algorithm establishes a node ordering by using certain symmetry properties of the graphs. In this paper, we present certain molecular graphs for which the algorithm fails to generate UIDs. Indeed, we show that different graphs in the same symmetry class employed by the Unique SMILES algorithm have different Unique SMILES IDs. We tested the algorithm on the National Cancer Institute (NCI) database [7] and found several molecular structures for which the algorithm also failed. We have also written a python script that generates molecular graphs for which the algorithm fails.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom