Using Learner Focus of Attention to Detect Learner Motivation Factors
Author(s) -
Lei Qu,
Ning Wang,
W. Lewis Johnson
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-27885-0
DOI - 10.1007/11527886_10
Subject(s) - computer science , focus (optics) , multimedia , human–computer interaction , artificial intelligence , mathematics education , psychology , optics , physics
This paper presents a model for pedagogical agents to use the learner's attention to detect motivation factors of the learner in interactive learning environments. This model is based on observations from human tutors coaching students in on-line learning tasks. It takes into account the learner's focus of attention, current task, and expected time required to perform the task. A Bayesian model is used to combine evidence from the learner's eye gaze and interface actions to infer the learner's focus of attention. Then the focus of attention is combined with information about the learner's activities, inferred by a plan recognizer, to detect the learner's degree of confidence, confusion and effort. Finally, we discuss the results of an empirical study that we performed to evaluate our model.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom