z-logo
open-access-imgOpen Access
Multinomial Event Model Based Abstraction for Sequence and Text Classification
Author(s) -
Dae-Ki Kang,
Jun Zhang,
Adrian Silvescu,
Vasant Honavar
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-27872-9
DOI - 10.1007/11527862_10
Subject(s) - computer science , multinomial distribution , artificial intelligence , taxonomy (biology) , word (group theory) , naive bayes classifier , natural language processing , event (particle physics) , machine learning , cluster analysis , mathematics , statistics , support vector machine , botany , geometry , physics , quantum mechanics , biology
In many machine learning applications that deal with sequences, there is a need for learning algorithms that can effectively utilize the hierarchical grouping of words. We introduce Word Taxonomy guided Naive Bayes Learner for the Multinomial Event Model (WTNBL-MN) that exploits word taxonomy to generate compact classifiers, and Word Taxonomy Learner (WTL) for automated construction of word taxonomy from sequence data. WTNBL-MN is a generalization of the Naive Bayes learner for the Multinomial Event Model for learning classifiers from data using word taxonomy. WTL uses hierarchical agglomerative clustering to cluster words based on the distribution of class labels that co-occur with the words. Our experimental results on protein localization sequences and Reuters text show that the proposed algorithms can generate Naive Bayes classifiers that are more compact and often more accurate than those produced by standard Naive Bayes learner for the Multinomial Model.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom