Bearing Similarity Measures for Self-organizing Feature Maps
Author(s) -
Narongdech Keeratipra,
Frédéric Maire
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-26972-X
DOI - 10.1007/11508069_38
Subject(s) - landmark , manifold (fluid mechanics) , computer science , artificial intelligence , metric (unit) , computer vision , robot , bearing (navigation) , similarity (geometry) , riemannian manifold , representation (politics) , curvature , feature (linguistics) , space (punctuation) , feature vector , pattern recognition (psychology) , mathematics , image (mathematics) , geometry , pure mathematics , mechanical engineering , linguistics , operations management , philosophy , politics , law , political science , engineering , economics , operating system
The neural representation of space in rats has inspired many navigation systems for robots. In particular, Self-Organizing (Feature) Maps (SOM) are often used to give a sense of location to robots by mapping sensor information to a low-dimensional grid. For example, a robot equipped with a panoramic camera can build a 2D SOM from vectors of landmark bearings. If there are four landmarks in the robot's environment, then the 2D SOM is embedded in a 2D manifold lying in a 4D space. In general, the set of observable sensor vectors form a low-dimensional Riemannian manifold in a high-dimensional space. In a landmark bearing sensor space, the manifold can have a large curvature in some regions (when the robot is near a landmark for example), making the Eulidian distance a very poor approximation of the Riemannian metric. In this paper, we present and compare three methods for measuring the similarity between vectors of landmark bearings. We also discuss a method to equip SOM with a good approximation of the Riemannian metric. Although we illustrate the techniques with a landmark bearing problem, our approach is applicable to other types of data sets
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom