Probabilistic Escrow of Financial Transactions with Cumulative Threshold Disclosure
Author(s) -
Stanisław Jarecki,
Vitaly Shmatikov
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-26656-9
DOI - 10.1007/11507840_17
Subject(s) - escrow , key escrow , computer science , database transaction , probabilistic logic , computer security , robustness (evolution) , encryption , anonymity , public key cryptography , database , artificial intelligence , biochemistry , chemistry , gene
We propose a scheme for privacy-preserving escrow of financial transactions. The objective of the scheme is to preserve privacy and anonymity of the individual user engaging in financial transactions until the cumulative amount of all transactions in a certain category, for example all transactions with a particular counterparty in any single month, reaches a pre-specified threshold. When the threshold is reached, the escrow agency automatically gains the ability to decrypt the escrows of all transactions in that category (and only that category). Our scheme employs the probabilistic polling idea of Jarecki and Odlyzko [JO97], amended by a novel robustness mechanism which makes such scheme secure for malicious parties. When submitting the escrow of a transaction, with probability that is proportional to the amount of the transaction, the user reveals a share of the key under which all his transactions are encrypted. Therefore, the fraction of shares that are known to the escrow agency is an accurate approximation of the fraction of the threshold amount that has been transacted so far. When the threshold is reached, with high probability the escrow agency possesses all the shares that it needs to reconstruct the key and open the escrows. Our main technical contribution is a novel tool of robust probabilistic information transfer, which we implement using techniques of optimistic fair 2-party computation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom