z-logo
open-access-imgOpen Access
Mathematical Foundation of Association Rules - Mining Associations by Solving Integral Linear Inequalities
Author(s) -
Tsau Young Lin
Publication year - 2005
Language(s) - English
DOI - 10.1007/11498186_2
Informally, data mining is derivation of patterns from data. The mathematical mechanics of association mining (AM) is carefully examined from this point. The data is table of symbols, and a pattern is any algebraic/logic expressions derived from this table that have high supports. Based on this view, we have the following theorem: A pattern (generalized associations) of a relational table can be found by solving a finite set of linear inequalities within a polynomial time of the table size. The main results are derived from few key notions that observed previously: (1) Isomorphism: Isomorphic relations have isomorphic patterns. (2) Canonical Representations: In each isomorphic class, there is a unique bitmap based model, called granular data model

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom