z-logo
open-access-imgOpen Access
Mining Small Objects in Large Images Using Neural Networks
Author(s) -
Mengjie Zhang
Publication year - 2005
Language(s) - English
DOI - 10.1007/11498186_16
Since the late 1980s, neural networks have been widely applied to data mining. However, they are often criticised and regarded as a “black box” due to the lack of interpretation ability. This chapter describes a domain independent approach to the use of neural networks for mining multiple class, small objects in large images. In this approach, the networks are trained by the back propagation algorithm on examples which have been cut out from the large images. The trained networks are then applied, in a moving window fashion, over the large images to mine the objects of interest. During the mining process, both the classes and locations of the objects are determined. The network behaviour is interpreted by analysing the weights in learned networks. Visualisation of these weights not only gives an intuitive way of representing hidden patterns encoded in learned neural networks for object mining problems, but also shows that neural networks are not just a black box but an expression or a model of hidden patterns discovered in the data mining process.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom