z-logo
open-access-imgOpen Access
Approximation Algorithms for Stochastic Inventory Control Models
Author(s) -
Retsef Levi,
Martin Pál,
R. Roundy,
David B. Shmoys
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
DOI - 10.1007/11496915_23
Subject(s) - computer science , inventory control , stochastic approximation , mathematical optimization , stochastic control , time horizon , stochastic modelling , optimal control , mathematics , operations research , key (lock) , statistics , computer security
We consider stochastic control inventory models in which the goal is to coordinate a sequence of orders of a single commodity, aiming to supply stochastic demands over a discrete finite horizon with minimum expected overall ordering, holding and backlogging costs. In particular, we consider the periodic-review stochastic inventory control problem and the stochastic lot-sizing problem in the case where demands over time are correlated and non-stationary (time-dependent). In these cases, it is usually very hard to compute the optimal policy. We provide what we believe to be the first computationally efficient policies with constant worst-case performance guarantees. More specifically, we provide a general 2-approximation algorithm for the periodic-review stochastic inventory control problem and a 3-approximation algorithm for the stochastic lot-sizing problem. Our approach is based on several novel ideas: we present a new (marginal) cost accounting for stochastic inventory models; we use cost-balancing techniques; and we consider non base-stock (order-up-to) policies that are extremely easy to implement on-line. Our results are valid for all of the currently known approaches in the literature to model correlation and non-stationarity of demands over time.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom