z-logo
open-access-imgOpen Access
Parametric Analysis for Ungapped Markov Models of Evolution
Author(s) -
David FernándezBaca,
Balaji Venkatachalam
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
DOI - 10.1007/11496656_34
Subject(s) - sequence (biology) , markov chain , parametric statistics , computer science , algorithm , combinatorics , markov model , evolutionary algorithm , mathematics , artificial intelligence , statistics , machine learning , biology , genetics
We present efficient sensitivity-analysis algorithms for two problems involving Markov models of sequence evolution: ancestral reconstruction in evolutionary trees and local ungapped alignment under log-odds scoring. Our algorithms generate complete descriptions of the optimum solutions for all possible values of the evolutionary distance. The running time for the parametric ancestral reconstruction problem under the Kimura 2-parameter model is O(kn + kn2/3 log k), where n is the number of sequences and k is their length, assuming all edges have the same length. For the parametric gapless alignment problem under the Jukes-Cantor model, the running time is O(mn + mn2/3 log m), where m and n are the sequence lengths and n ≤ m.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom