Boosting GMM and Its Two Applications
Author(s) -
Fei Wang,
Changshui Zhang,
Naijiang Lu
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-26306-3
DOI - 10.1007/11494683_2
Subject(s) - boosting (machine learning) , gradient descent , mixture model , gradient boosting , computer science , artificial intelligence , gaussian , machine learning , pattern recognition (psychology) , mathematical optimization , algorithm , mathematics , artificial neural network , physics , random forest , quantum mechanics
Boosting is an effecient method to improve the classification performance. Recent theoretical work has shown that the boosting technique can be viewed as a gradient descent search for a good fit in function space. Several authors have applied such viewpoint to solve the density estimation problems. In this paper we generalize such framework to a specific density model – Gaussian Mixture Model (GMM) and propose our boosting GMM algorithm. We will illustrate the applications of our algorithm to cluster ensemble and short-term traffic flow forecasting problems. Experimental results are presented showing the effectiveness of our approach.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom