z-logo
open-access-imgOpen Access
QED: An Efficient Framework for Temporal Region Query Processing
Author(s) -
Yi-Hong Chu,
Kun-Ta Chuang,
Ming-Syan Chen⋆
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-26076-5
DOI - 10.1007/11430919_39
Subject(s) - computer science , tree (set theory) , spatial query , query optimization , quality (philosophy) , data mining , theoretical computer science , information retrieval , sargable , web search query , search engine , mathematics , mathematical analysis , philosophy , epistemology
In this paper, we explore a new problem of ”temporal dense region query” to discover the dense regions in the constrainted time intervals which can be separated or not. A Querying tEmporal Dense Region framework (abbreviated as QED) proposed to deal with this problem consists of two phases: (1) an offline maintaining phase, to maintain the statistics of data by constructing a number of summarized structures, RF-trees; (2) an online query processing phase, to provide an efficient algorithm to execute queries on the RF-trees. The QED framework has the advantage that by using the summarized structures, RF-trees, the queries can be executed efficiently without accessing the raw data. In addition, a number of RF-trees can be merged with one another efficiently such that the queries will be executed efficiently on the combined RF-tree. As validated by our empirical studies, the QED framework performs very efficiently while producing the results of high quality.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom