Pruning Derivative Partial Rules During Impact Rule Discovery
Author(s) -
Shiying Huang,
Geoffrey I. Webb
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-26076-5
DOI - 10.1007/11430919_10
Subject(s) - derivative (finance) , pruning , computer science , exploratory data analysis , data mining , exploratory research , artificial intelligence , algorithm , economics , financial economics , agronomy , biology , sociology , anthropology
Because exploratory rule discovery works with data that is only a sample of the phenomena to be investigated, some resulting rules may appear interesting only by chance. Techniques are developed for automatically discarding statistically insignificant exploratory rules that cannot survive a hypothesis with regard to its ancestors. We call such insignificant rules derivative extended rules. In this paper, we argue that there is another type of derivative exploratory rules, which is derivative with regard to their children. We also argue that considerable amount of such derivative partial rules can not be successfully removed using existing rule pruning techniques. We propose a new technique to address this problem. Experiments are done in impact rule discovery to evaluate the effect of this derivative partial rule filter. Results show that the inherent problem of too many resulting rules in exploratory rule discovery is alleviated.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom