Event-Driven Document Selection for Terrorism Information Extraction
Author(s) -
Zhen Sun,
EePeng Lim,
Kuiyu Chang,
Teng-Kwee Ong,
Rohan Gunaratna
Publication year - 2005
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
DOI - 10.1007/11427995_4
Subject(s) - computer science , event (particle physics) , task (project management) , selection (genetic algorithm) , information extraction , set (abstract data type) , information retrieval , data mining , relationship extraction , artificial intelligence , management , economics , physics , quantum mechanics , programming language
In this paper, we examine the task of extracting information about terrorism related events hidden in a large document collection. The task assumes that a terrorism related event can be described by a set of entity and relation instances. To reduce the amount of time and efforts in extracting these event related instances, one should ideally perform the task on the relevant documents only. We have therefore proposed some document selection strategies based on information extraction (IE) patterns. Each strategy attempts to select one document at a time such that the gain of event related instance information is maximized. Our IE-based document selection strategies assume that some IE patterns are given to extract event instances. We conducted some experiments for one terrorism related event. Experiments have shown that our proposed IE based document selection strategies work well in the extraction task for news collections of various size.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom