z-logo
open-access-imgOpen Access
Intelligent Systems and Soft Computing
Author(s) -
Benham Azvine,
Detlef Nauck,
Nader Azarmi
Publication year - 2000
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
DOI - 10.1007/10720181
Subject(s) - computer science , soft computing , artificial intelligence , artificial neural network
Computing, in its usual sense, is centered on manipulation of numbers and symbols. In contrast, computing with words, or CW for short, is a methodology in which the objects of computation are words and propositions drawn from a natural language, e.g. small, large, far, heavy, not very likely, the price of gas is low and declining, Berkeley is near San Francisco, CA, it is very unlikely that there will be a significant increase in the price of oil in the near future, etc. Computing with words (CW) is inspired by the remarkable human capability to perform a wide variety of physical and mental tasks without any measurements and any computations. Familiar examples of such tasks are parking a car, driving in heavy traffic, playing golf, riding a bicycle, understanding speech, and summarizing a story. Underlying this remarkable capability is the brain’s crucial ability to manipulate perceptions—perceptions of distance, size, weight, color, speed, time, direction, force, number, truth, likelihood, and other characteristics of physical and mental objects. Manipulation of perceptions plays a key role in human recognition, decision and execution processes. As a methodology, computing with words provides a foundation for a computational theory of perceptions— a theory which may have an important bearing on how humans make—and machines might make—perception-based rational decisions in an environment of imprecision, uncertainty and partial truth. A basic difference between perceptions and measurements is that, in general, measurements are crisp whereas perceptions are fuzzy. One of the fundamental aims of science has been and continues to be that of progressing from perceptions to measurements. Pursuit of this aim has led to brilliant successes. We have sent men to the moon; we can build computers that are capable of performing billions of computations per second; we have constructed telescopes that can explore the far reaches of the universe; and we can date the age of rocks that are millions of years old. But alongside the brilliant successes stand conspicuous underachievements and outright failures. We cannot build robots which can move with the agility of animals or humans; we cannot automate driving in heavy traffic; we cannot translate from one language to another at the level of a human interpreter; we cannot create programs which can summarize nontrivial stories; our ability to model the behavior of economic systems leaves much to be desired; and we cannot build machines that can compete with children in the performance of a wide variety of physical and cognitive tasks. 1 ©1999 IEEE. Reprinted, with permission, from IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, Vol 45, No 1, January 1999.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom