
Integrative physical oncology
Author(s) -
Hatzikirou Haralampos,
Chauviere Arnaud,
Bauer Amy L.,
Leier André,
Lewis Michael T.,
Macklin Paul,
MarquezLago Tatiana T.,
Bearer Elaine L.,
Cristini Vittorio
Publication year - 2011
Publication title -
wiley interdisciplinary reviews: systems biology and medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.087
H-Index - 51
eISSN - 1939-005X
pISSN - 1939-5094
DOI - 10.1002/wsbm.158
Subject(s) - context (archaeology) , systems biology , neuroscience , computational biology , function (biology) , extracellular matrix , computer science , multiscale modeling , biology , bioinformatics , psychology , microbiology and biotechnology , paleontology
Cancer is arguably the ultimate complex biological system. Solid tumors are microstructured soft matter that evolves as a consequence of spatio‐temporal events at the intracellular (e.g., signaling pathways, macromolecular trafficking), intercellular (e.g., cell–cell adhesion/communication), and tissue (e.g., cell–extracellular matrix interactions, mechanical forces) scales. To gain insight, tumor and developmental biologists have gathered a wealth of molecular, cellular, and genetic data, including immunohistochemical measurements of cell type‐specific division and death rates, lineage tracing, and gain‐of‐function/loss‐of‐function mutational analyses. These data are empirically extrapolated to a diagnosis/prognosis of tissue‐scale behavior, e.g., for clinical decision. Integrative physical oncology (IPO) is the science that develops physically consistent mathematical approaches to address the significant challenge of bridging the nano (nm)–micro (µm) to macro (mm, cm) scales with respect to tumor development and progression. In the current literature, such approaches are referred to as multiscale modeling. In the present article, we attempt to assess recent modeling approaches on each separate scale and critically evaluate the current ‘hybrid‐multiscale’ models used to investigate tumor growth in the context of brain and breast cancers. Finally, we provide our perspective on the further development and the impact of IPO. WIREs Syst Biol Med 2012, 4:1–14. doi: 10.1002/wsbm.158 This article is categorized under: Analytical and Computational Methods > Computational Methods