z-logo
open-access-imgOpen Access
Targeting epidermal growth factor receptor co‐dependent signaling pathways in glioblastoma
Author(s) -
Liu Feng,
Mischel Paul S.
Publication year - 2017
Publication title -
wiley interdisciplinary reviews: systems biology and medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.087
H-Index - 51
eISSN - 1939-005X
pISSN - 1939-5094
DOI - 10.1002/wsbm.1398
Subject(s) - epidermal growth factor receptor , receptor tyrosine kinase , cancer research , biology , signal transduction , personalized medicine , tyrosine kinase , epidermal growth factor , cancer , bioinformatics , receptor , microbiology and biotechnology , genetics
The epidermal growth factor receptor (EGFR) is a transmembrane receptor tyrosine kinase (RTK) that is critical for normal development and function. EGFR is also amplified or mutated in a variety of cancers including in nearly 60% of cases of the highly lethal brain cancer glioblastoma (GBM). EGFR amplification and mutation reprogram cellular metabolism and broadly alter gene transcription to drive tumor formation and progression, rendering EGFR as a compelling drug target. To date, brain tumor patients have yet to benefit from anti‐EGFR therapy due in part to an inability to achieve sufficient intratumoral drug levels in the brain, cultivating adaptive mechanisms of resistance. Here, we review an alternative set of strategies for targeting EGFR‐amplified GBMs, based on identifying and targeting tumor co‐dependencies shaped both by aberrant EGFR signaling and the brain's unique biochemical environment. These approaches may include highly brain‐penetrant drugs from non‐cancer pipelines, expanding the pharmacopeia and providing promising new treatments. We review the molecular underpinnings of EGFR‐activated co‐dependencies in the brain and the promising new treatments based on this strategy. WIREs Syst Biol Med 2018, 10:e1398. doi: 10.1002/wsbm.1398 This article is categorized under: Biological Mechanisms > Cell Signaling Laboratory Methods and Technologies > Genetic/Genomic Methods Translational, Genomic, and Systems Medicine > Translational Medicine

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here