Aging and computational systems biology
Author(s) -
Mooney Kathleen M.,
Morgan Amy E.,
Mc Auley Mark T.
Publication year - 2016
Publication title -
wiley interdisciplinary reviews: systems biology and medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.087
H-Index - 51
eISSN - 1939-005X
pISSN - 1939-5094
DOI - 10.1002/wsbm.1328
Subject(s) - computational biology , systems biology , biology , computer science
Aging research is undergoing a paradigm shift, which has led to new and innovative methods of exploring this complex phenomenon. The systems biology approach endeavors to understand biological systems in a holistic manner, by taking account of intrinsic interactions, while also attempting to account for the impact of external inputs, such as diet. A key technique employed in systems biology is computational modeling, which involves mathematically describing and simulating the dynamics of biological systems. Although a large number of computational models have been developed in recent years, these models have focused on various discrete components of the aging process, and to date no model has succeeded in completely representing the full scope of aging. Combining existing models or developing new models may help to address this need and in so doing could help achieve an improved understanding of the intrinsic mechanisms which underpin aging. WIREs Syst Biol Med 2016, 8:123–139. doi: 10.1002/wsbm.1328 This article is categorized under: Analytical and Computational Methods > Computational Methods Models of Systems Properties and Processes > Mechanistic Models
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom