Network coding‐based channel quality indicator reporting for two‐way multi‐relay networks
Author(s) -
Vien QuocTuan,
Nguyen Huan X.
Publication year - 2012
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1002/wcm.2296
Subject(s) - computer science , relay , computer network , linear network coding , coding (social sciences) , relay channel , quality (philosophy) , telecommunications , statistics , power (physics) , physics , mathematics , quantum mechanics , network packet , philosophy , epistemology
This paper considers channel quality indicator (CQI) reporting for data exchange in a two‐way multi‐relay network. We first propose an efficient CQI reporting scheme based on network coding, where two terminals are allowed to simultaneously estimate the CQI of the distant terminal‐relay link without suffering from additional overhead. In addition, the transmission time for CQI feedback at the relays is reduced by half while the increase in complexity and the loss of performance are negligible. This results in a system throughput improvement of 16.7% with our proposed CQI reporting. Upper and lower bounds of the mean square error (MSE) of the estimated CQI are derived to study performance behaviour of our proposed scheme. It is found that the MSE of the estimated CQI increases proportionally with the square of the cardinality of CQI level sets although an increased number of CQI levels would eventually lead to a higher data rate transmission. On the basis of the derived bounds, a low‐complexity relay selection (RS) scheme is then proposed. Simulation results show that, in comparison with optimal methods, our suboptimal bound‐based RS scheme achieves satisfactory performance while reducing the complexity at least three times in case of large number of relays. Copyright © 2012 John Wiley & Sons, Ltd.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom