z-logo
open-access-imgOpen Access
On the performance of multi‐hop wireless relay networks
Author(s) -
Jaafar Wael,
Ajib Wessam,
Haccoun David
Publication year - 2014
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1002/wcm.1246
Subject(s) - relay , computer science , space–time block code , pairwise error probability , bit error rate , hop (telecommunications) , computer network , linear network coding , cooperative diversity , wireless , wireless network , relay channel , channel state information , diversity gain , antenna diversity , channel (broadcasting) , telecommunications , mimo , power (physics) , physics , quantum mechanics , network packet
User cooperation has evolved as a popular coding technique in wireless relay networks (WRNs). Using the neighboring nodes as relays to establish a communication between a source and a destination achieves an increase of the diversity order. The relay nodes can be seen as a distributed multi‐antenna system, which can be exploited for transmit diversity by using distributed space–time block coding (STBC). In this paper, we investigate the bit error rate (BER) of multi‐hop WRNs employing distributed STBC at the relay nodes. We develop the general model of WRNs using distributed STBC, and we derive the pairwise error probability and an approximation of the BER. We examine the impact of several parameters, such as distributed STBC at the relays, the number of relays, the distances between the nodes, and the channel state information available at the receivers, on the BER performance of the multi‐hop WRN. The obtained results provide guidelines about the expected error performance and the design of channel estimation for these networks. Copyright © 2011 John Wiley & Sons, Ltd.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom