z-logo
open-access-imgOpen Access
Modeling and performance evaluation of Advanced Diffusion with Classified Data in vehicular sensor networks
Author(s) -
Haddadou Nadia,
Rachedi Abderrezak,
GhamriDoudane Yacine
Publication year - 2011
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1002/wcm.1220
Subject(s) - computer science , markov chain , broadcasting (networking) , overhead (engineering) , probabilistic logic , computer network , latency (audio) , redundancy (engineering) , data redundancy , protocol (science) , distributed computing , real time computing , telecommunications , machine learning , medicine , alternative medicine , pathology , artificial intelligence , operating system
In this paper, we propose a newly distributed protocol called Advanced Diffusion of Classified Data (ADCD) to manage information harvesting and distribution in vehicular sensor networks. ADCD aims at reducing the generated overhead, avoiding network congestions as well as long latency to deliver the harvested information. The concept of ADCD is based on the characterization of sensed information (i.e., based on its importance, location, and time of collection) and the diffusion of this information accordingly. Furthermore, ADCD uses an adaptive broadcasting strategy to avoid overwhelming users with messages in which they have no interest. Also, we propose in this paper a new probabilistic model for ADCD based on Markov chain. This one aims to optimally tune the parameters of ADCD, such as the optimal number of broadcaster nodes. The analytical and simulation results based on different metrics, such as the overhead, the delivery ratio, the probability of a complete transmission, and the minimal number of hops, are presented. These results illustrate that ADCD allows mitigating the information redundancy and its delivery with an adequate latency while making the reception of interesting data for the drivers (related to their location) more adapted. Moreover, the ADCD protocol reduces the overhead by 90% compared with the classical broadcast and an adapted version of MobEyes. The ADCD overhead is kept stable whatever the vehicular density. Copyright © 2011 John Wiley & Sons, Ltd.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom