z-logo
open-access-imgOpen Access
Outsourcing secure two‐party computation as a black box
Author(s) -
Carter Henry,
Mood Benjamin,
Traynor Patrick,
Butler Kevin
Publication year - 2016
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0122
pISSN - 1939-0114
DOI - 10.1002/sec.1486
Subject(s) - computer science , outsourcing , secure two party computation , overhead (engineering) , secure multi party computation , cryptography , protocol (science) , computation , server , computer security , mobile device , cryptographic protocol , computer network , bandwidth (computing) , distributed computing , operating system , algorithm , medicine , alternative medicine , pathology , political science , law
Secure multiparty computation (SMC) offers a technique to preserve functionality and data privacy in mobile applications. Current protocols that make this costly cryptographic construction feasible on mobile devices securely outsource the bulk of the computation to a cloud provider. However, these outsourcing techniques are built on specific secure computation assumptions and tools, and applying new SMC ideas to the outsourced setting requires the protocols to be completely rebuilt and proven secure. In this work, we develop a generic technique for lifting any secure two‐party computation protocol into an outsourced two‐party SMC protocol. By augmenting the function being evaluated with auxiliary consistency checks and input values, we can create an outsourced protocol with low overhead cost. Our implementation and evaluation show that in the best case our outsourcing additions execute within the confidence intervals of two servers running the same computation and consume approximately the same bandwidth. In addition, the mobile device itself uses minimal bandwidth over a single round of communication. This work demonstrates that efficient outsourcing is possible with any underlying SMC scheme and provides an outsourcing protocol that is efficient and directly applicable to current and future SMC techniques. Copyright © 2016 John Wiley & Sons, Ltd.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom