
Concise Review: Mesenchymal Stem Cells for Functional Cartilage Tissue Engineering: Taking Cues from Chondrocyte‐Based Constructs
Author(s) -
Tan Andrea R.,
Hung Clark T.
Publication year - 2017
Publication title -
stem cells translational medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.781
H-Index - 71
eISSN - 2157-6580
pISSN - 2157-6564
DOI - 10.1002/sctm.16-0271
Subject(s) - mesenchymal stem cell , cartilage , chondrocyte , stem cell , tissue engineering , osteoarthritis , stem cell transplantation for articular cartilage repair , medicine , microbiology and biotechnology , biology , cellular differentiation , pathology , adult stem cell , anatomy , biomedical engineering , biochemistry , alternative medicine , gene
Osteoarthritis, the most prevalent form of joint disease, afflicts 9% of the U.S. population over the age of 30 and costs the economy nearly $100 billion annually in healthcare and socioeconomic costs. It is characterized by joint pain and dysfunction, though the pathophysiology remains largely unknown. Due to its avascular nature and limited cellularity, articular cartilage exhibits a poor intrinsic healing response following injury. As such, significant research efforts are aimed at producing engineered cartilage as a cell‐based approach for articular cartilage repair. However, the knee joint is mechanically demanding, and during injury, also a milieu of harsh inflammatory agents. The unforgiving mechano‐chemical environment requires tissue replacements that are capable of bearing such burdens. The use of mesenchymal stem cells (MSCs) for cartilage tissue engineering has emerged as a promising cell source due to their ease of isolation, capacity to readily expand in culture, and ability to undergo lineage‐specific differentiation into chondrocytes. However, to date, very few studies utilizing MSCs have successfully recapitulated the structural and functional properties of native cartilage, exposing the difficult process of uniformly differentiating stem cells into desired cell fates and maintaining the phenotype during in vitro culture and after in vivo implantation. To address these shortcomings, here, we present a concise review on modulating stem cell behavior, tissue development and function using well‐developed techniques from chondrocyte‐based cartilage tissue engineering. S tem C ells T ranslational M edicine 2017;6:1295–1303