z-logo
open-access-imgOpen Access
Collision-free control of robotic manipulators in the task space
Author(s) -
Miroslaw Galicki
Publication year - 2005
Publication title -
journal of robotic systems
Language(s) - English
DOI - 10.1002/rob.v22:8
This paper addresses the problem of position control of robotic manipulators in the task space with obstacles. A computationally simple class of task space regulators consisting of a transpose Jacobian controller plus an integral term including the task error and the gradient of a penalty function generated by obstacles is proposed. The Lyapunov stability theory is used to derive the control scheme. Through the use of the exterior penalty function approach, collision avoidance of the robot with obstacles is ensured. The performance of the proposed control strategy is illustrated through computer simulations for a direct-drive arm of a SCARA type manipulator operating in both an obstacle-free task space and a task space including obstacles. © 2005 Wiley Periodicals, Inc.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom