
Goshajinkigan attenuates paclitaxel‐induced neuropathic pain via cortical astrocytes
Author(s) -
Takanashi Kenta,
Shibata Keisuke,
Mizuno Keita,
Komatsu Ryohei,
Koizumi Schuichi
Publication year - 2021
Publication title -
pharmacology research and perspectives
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.975
H-Index - 27
ISSN - 2052-1707
DOI - 10.1002/prp2.850
Subject(s) - neuropathic pain , allodynia , medicine , astrocyte , peripheral neuropathy , microglia , hyperalgesia , pharmacology , neuroscience , anesthesia , nociception , central nervous system , inflammation , endocrinology , receptor , biology , diabetes mellitus
The anticancer agents platinum derivatives and taxanes such as paclitaxel (PCX) often cause neuropathy known as chemotherapy‐induced peripheral neuropathy with high frequency. However, the cellular and molecular mechanisms underlying such neuropathy largely remain unknown. Here, we show new findings that the effect of Goshajinkigan (GJG), a Japanese KAMPO medicine, inhibits PCX‐induced neuropathy by acting on astrocytes. The administration of PCX in mice caused the sustained neuropathy lasting at least 4 weeks, which included mechanical allodynia and thermal hyperalgesia but not cold allodynia. PCX‐evoked pain behaviors were associated with the sensitization of all primary afferent fibers. PCX did not activate microglia or astrocytes in the spinal cord. However, it significantly activated astrocytes in the primary sensory (S1) cortex without affecting S1 microglial activation there. GJG significantly inhibited the PCX‐induced mechanical allodynia by 50% and thermal hyperalgesia by 90%, which was in accordance with the abolishment of astrocytic activation in the S1 cortex. Finally, the inhibition of S1 astrocytes by an astrocyte‐toxin L‐alpha‐aminoadipic acid abolished the PCX‐induced neuropathy. Our findings suggest that astrocytes in the S1 cortex would play an important role in the pathogenesis of PCX‐induced neuropathy and are a potential target for its treatment.