z-logo
open-access-imgOpen Access
The signaling and selectivity of α‐adrenoceptor agonists for the human α2A , α2B and α2C ‐adrenoceptors and comparison with human α1 and β‐adrenoceptors
Author(s) -
Proudman Richard G. W.,
Akinaga Juliana,
Baker Jillian G.
Publication year - 2022
Publication title -
pharmacology research and perspectives
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.975
H-Index - 27
ISSN - 2052-1707
DOI - 10.1002/prp2.1003
Subject(s) - agonist , intrinsic activity , oxymetazoline , chemistry , receptor , dexmedetomidine , potency , pharmacology , partial agonist , gi alpha subunit , adrenergic receptor , phosphorylation , ic50 , g protein , medicine , biochemistry , in vitro , sedation
α2‐adrenoceptors, (α2A, α2B and α2C‐subtypes), are Gi‐coupled receptors. Central activation of brain α2A and α2C‐adrenoceptors is the main site for α2‐agonist mediated clinical responses in hypertension, ADHD, muscle spasm and ITU management of sedation, reduction in opiate requirements, nausea and delirium. However, despite having the same Gi‐potency in functional assays, some α2‐agonists also stimulate Gs‐responses whilst others do not. This was investigated. Agonist responses to 49 different α‐agonists were studied (CRE‐gene transcription, cAMP, ERK1/2‐phosphorylation and binding affinity) in CHO cells stably expressing the human α2A, α2B or α2C‐adrenoceptor, enabling ligand intrinsic efficacy to be determined (binding K D /Gi‐IC 50 ). Ligands with high intrinsic efficacy (e.g., brimonidine and moxonidine at α2A) stimulated biphasic (Gi‐Gs) concentration responses, however for ligands with low intrinsic efficacy (e.g., naphazoline), responses were monophasic (Gi‐only). ERK1/2‐phosphorylation responses appeared to be Gi‐mediated. For Gs‐mediated responses to be observed, both a system with high receptor reserve and high agonist intrinsic efficacy were required. From the Gi‐mediated efficacy ratio, the degree of Gs‐coupling could be predicted. The clinical relevance and precise receptor conformational changes that occur, given the structural diversity of compounds with high intrinsic efficacy, remains to be determined. Comparison with α1 and β1/β2‐adrenoceptors demonstrated subclass affinity selectivity for some compounds (e.g., α2:dexmedetomidine, α1:A61603) whilst e.g., oxymetazoline had high affinity for both α2A and α1A‐subtypes, compared to all others. Some compounds had subclass selectivity due to selective intrinsic efficacy (e.g., α2:brimonidine, α1:methoxamine/etilefrine). A detailed knowledge of these agonist characteristics is vital for improving computer‐based deep‐learning and drug design.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here