Temperature and aging dependence of strain‐induced crystallization and cavitation in highly crosslinked and filled natural rubber
Author(s) -
Demassieux Quentin,
Berghezan Daniel,
Cantournet Sabine,
Proudhon Henry,
Creton Costantino
Publication year - 2019
Publication title -
journal of polymer science part b: polymer physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.65
H-Index - 145
eISSN - 1099-0488
pISSN - 0887-6266
DOI - 10.1002/polb.24832
Subject(s) - materials science , cavitation , elastomer , natural rubber , composite material , carbon black , crystallization , nucleation , glass transition , polymer , chemical engineering , chemistry , thermodynamics , physics , organic chemistry , engineering
We have investigated the structural changes occurring in highly crosslinked and carbon‐black filled natural rubber under uniaxial extension by small‐ and wide‐angle X‐ray scattering using synchrotron radiation. The experiments focused on strain‐induced crystallization (SIC) and nanocavitation and were carried out on a model series of materials as a function of temperature and aging conditions. We find that for all materials both SIC and cavitation decrease markedly with temperature and aging. However, the presence of carbon black filler shifts the ceiling temperature where SIC is observed to at least 120°C, presumably by a nucleating effect, maintaining the high strength of the elastomers. Interestingly, although in pure elastomers, the cavitation strength decreases with temperature, we find that in these filled elastomers the critical stress for the onset of cavitation increases significantly with temperature strongly suggesting that cavitation is due to the local confinement between fillers and supporting the idea of a glassy layer near the filler. Aging for 10 days at 110°C in oxygen‐free conditions decreases both SIC and cavitation and reduces the strength of the elastomer at high temperature. This is attributed to the formation of sulfur side chains hindering the crystallization. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57 , 780–793
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom