Self‐recovery and fatigue of double‐network gels with permanent and reversible bonds
Author(s) -
Drozdov Aleksey D.,
Christiansen Jesper deClaville,
Dusunceli Necmi,
Sanporean CatalinaGabriela
Publication year - 2019
Publication title -
journal of polymer science part b: polymer physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.65
H-Index - 145
eISSN - 1099-0488
pISSN - 0887-6266
DOI - 10.1002/polb.24798
Subject(s) - deformation (meteorology) , materials science , strain (injury) , monotonic function , kinetics , stress (linguistics) , composite material , mathematics , physics , mathematical analysis , medicine , linguistics , philosophy , quantum mechanics
Double‐network (DN) gels subjected to cyclic deformation (stretching up to a fixed strain followed by retraction down to the zero stress) demonstrate a monotonic decrease in strain with time (self‐recovery). Observations show that the duration of total recovery varies in a wide interval (from a few minutes to several days depending on composition of the gel), and this time is strongly affected by deformation history. A model is developed for the kinetics of self‐recovery. Its ability to describe stress–strain diagrams in cyclic tests with various periods of recovery is confirmed by comparison with observations on several DN gels. Numerical simulation reveals pronounced enhancement of fatigue resistance in multi‐cycle tests with stress‐ and strain‐controlled programs when subsequent cycles of deformation are interrupted by intervals of recovery. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57 , 438–453
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom