z-logo
open-access-imgOpen Access
Microstructural PALS study of regulated dimethacrylates: Thiol‐ versus β‐allyl sulfone‐based networks
Author(s) -
Švajdlenková Helena,
Šauša Ondrej,
Steindl Johannes,
Koch Thomas,
Gorsche Christian
Publication year - 2016
Publication title -
journal of polymer science part b: polymer physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.65
H-Index - 145
eISSN - 1099-0488
pISSN - 0887-6266
DOI - 10.1002/polb.24240
Subject(s) - materials science , photopolymer , shrinkage , composite material , curing (chemistry) , void (composites) , polymer chemistry , elastomer , glass transition , toughness , swelling , polymer , chemical engineering , polymerization , engineering
Radical photocuring of multifunctional (meth)acrylates is lacking control over the irregular chain growth process yielding highly crosslinked, inhomogeneous networks. Chain transfer agents (CTAs, e.g., thiols or β‐allyl sulfones) have been widely used to modify this curing process, thus reducing shrinkage stress and increasing the toughness of the formed photopolymers. Resulting photopolymer networks exhibit higher bulk density, lower crosslinking density, and narrow glass transitions. Consequently, a more homogeneous network structure was postulated for those networks. Whereas macroscopic properties of the modified final materials have already been studied, herein the microstructural arrangement of such modified networks has also been evaluated with the help of positron annihilation lifetime spectroscopy (PALS). A more homogenous network structure with a decreased average free‐volume void size was confirmed for CTA‐based dimethacrylate networks. A sharper distribution of the ortho‐positronium (o‐Ps) lifetime, mainly for the β‐allyl sulfone‐based photopolymers, hints toward a more regulated network structure. Moreover, the combination of PALS, DMTA, density and swelling experiments elucidates relations between void formation, crosslinking density and macroscopic characteristics such as shrinkage stress and mechanical properties. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54 , 2476–2484

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom