z-logo
open-access-imgOpen Access
Fluorescent PMMA/MEH‐PPV electrospun nanofibers: Investigation of morphology, solvent, and surfactant effect
Author(s) -
Roque Aline P.,
Mercante Luiza A.,
Scagion Vanessa P.,
Oliveira Juliano E.,
Mattoso Luiz H. C.,
Boni Leonardo,
Mendonca Cleber R.,
Correa Daniel S.
Publication year - 2014
Publication title -
journal of polymer science part b: polymer physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.65
H-Index - 145
eISSN - 1099-0488
pISSN - 0887-6266
DOI - 10.1002/polb.23574
Subject(s) - electrospinning , nanofiber , materials science , polymer , fluorescence , pulmonary surfactant , chemical engineering , solvent , morphology (biology) , polymer chemistry , nanotechnology , composite material , chemistry , organic chemistry , optics , physics , engineering , biology , genetics
Electrospinning is a powerful technique to produce nanofibers of tunable diameter and morphology for medicine and biotechnological applications. By doping electrospun nanofibers with inorganic and organic compounds, new functionalities can be provided for technological applications. Herein, we report a study on the morphology and optical properties of electrospun nanofibers based on the conjugated polymer poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV) and poly(methylmethacrylate) (PMMA). Initially, we investigate the influence of the solvent, surfactant, and the polymer concentration on electrospinning of PMMA. After determining the best conditions, 0.1% MEH‐PPV was added to obtain fluorescent nanofibers. The optical characterizations display the successful impregnation of MEH‐PPV into the PMMA fibers without phase separation and the preservation of fluorescent property after fiber electrospinning. The obtained results show the ability of the electrospinning approach to obtain fluorescent PMMA/MEH‐PPV nanofibers with potential for optical devices applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52 , 1388–1394

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom